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When I was younger, I learned that Venn diagrams were a

helpful way of visualizing sets .

Later
, when learning point - set topology , I extend this

to picture open subsets of a topological space .

open set

c-open subset



It helped me understand and
"

see
"

properties of open sets .

←

"

openness
"

is indicated by
"

bulging out
"

-0A
the intersection of two open

this is not open sets is open (bulgy)
( not bulgy)



This required refining my notion of
"

bulginess
"

to make it work
.

← the union of two open sets

is open (bulgy)

✗ is both

closed and open→① Y

in Y .

But once it worked
,
it worked pretty well .



Something similar works in linear algebra .

a first
0
← bigger vector space

approximation : -smaller vector space

so how do we hardwire quotients into the picture?

One possibility : by interpreting the quotient Alps as the complement of

bulgy shape B in bulgy shape A. ←
A

B€¥A1B
We visually encode that B is a subspace of A, and AIB is a quotient of A .



Once things get sufficiently complicated , it becomes hard to draw bulges .

Instead
,
we use the metaphor of jigsaw puzzles

B
A

AB

>

I also like to picture the
"

subs
"

as at a higher

elevation than the
"

quotients
"

,
with water gently

flowing downhill from "

sub
"

areas to
"

quotient
"

areas
.

#
#



We can also decorate the regions, for example by dimension .

B
A

AB

Dimension is additive by region
3 ] 4

so here
,
dim A = 7

Here we see that if V
,
and V2 are subspaces of a vector space W

,
then

dim Civil = dink + drink - drinkin



This works more generally for abelian groups

for modules over a given ring

for objects in an abelian category .

In order to not distract you with fancy words
,
I

will use the language of abelian groups , but you may secretly

pretend that we are talking in as much generality as you feel

comfortable with
.



Here is an abelian group A
,
with a subgroup B, and the

corresponding quotient group C.

-A

B- D
↳

= A/B
-

If A-- B ④ C , we might instead draw

←

A=B④C

B-
\

n n



Here is a length three filtration of A : 0 C C C B c A.

It is also
, basically immediately , a picture of the

"

Third Isomorphism Theorem
"

:

tf cc Bc A
,
then BECAK , and Afg is canonically identified with Ak/% .

÷*÷.



To summarize
,
we have a picture :

] 3

1
along with some labels

i
c '

1B

1 A 1

Which tell us which combinations of pieces
"

we can discuss
"

(or if you prefer, to which we ascribe meaning) :

I C I AK I

1 B 1 AIB I

1 A 1

I BK 1

which in turn encodes relationships among these groups.



Here is a group homomorphism ¢. ✗ → Y
.

#

o p
=

Optical illusion :

You might see this as an identification of a quotient group of ✗ with

a subgroup of Y .
But that's the same thing, isn't it?

Homework :
In the picture , label kerb and imd

.

Notice the first isomorphism theorem
✗hard = im ol in what you did .



Important Feature / Caution:

There is no object that is the
"

union
"

of X and Y l corresponding to all

three puzzle pieces at once) .

The only shapes you are allowed to discuss are parts (subs and quotients)
of those shown IX and Y )

.

To make this clearer
,
notice the difference between what is depicted

in the two pictures we have just discussed .

I
s p V5 .

o p

Ex =



A priori
,
the information sounds quite different -

a length three filtration rs
,

a homomorphism .

But I now see that the only real difference is that in the second

picture , we are not asserting the existence of an abelian group

corresponding to the union of all three pieces .

So for example , we can immediately take a length three

filtration and obtain a homomorphism of abelian groups , and we see

precisely what information we have lost by this change in point of view .



Here is a picture of two morphisms A-
B

↳
c

Question: Can you see Bhim ( Kerin. →c) →B))
?

Notice:

I can't draw a picture of a triangle A-
B

↳ of that doesn't commute

because I cannot draw two different maps A- → C in this way .



But I Cad draw a commuting triangle .

Here is a composition of two morphisms A -B-C
,

or equivalently , a commuting diagram
A - B

↳ I

.☒.
•

Why did I draw it this way ?

Why not more like a traditional Venn diagram ? :

It isn't because the regions are depicted as
circles - that isn't relevant .

(One clue : count the small regions .)



Notice that this picture needs to be
"two-dimensional

"

,
not linear

.

Homework :

can you quickly describe each of the smallest regions in terms of

A
,
B
,
and C

, using kernels and cokernels of the maps in the

commutative diagram ? First you will have to give them names , of course .)



Whenever you see a commuting triangle , you should forevermore
"

see
"

this picture . land you will immediately see all the

relevant subquotients at once) .

-01%01.4 Mmm
0 POS. . Not#0MW! D)nous heh

'

01M¥ sik 00s nah sonouoym



Homework : How would you draw A - B -C if you knew

further that it is a complex , i. e. that the composition

A - C is zero ?

What if furthermore it were exact
,
i. e. that

KerlB.→C) =imlA→B) ?

(No fair flipping ahead !)



Here is a commuting square :

A → B
or
, if you prefer,d b

D → C

(This was quite tricky to think through !)
Happily , this is still a picture we can draw in two dimensions !

Whenever you see a commuting square , you should
"

see
"

this picture .
land you will immediately see all the relevant subquotients at
once) .

-

osmbsbw.tn#Of0s..M0f0.0OMW!PMoysneh'

01M¥ sik 00s nah sonouoym



We have already drawn a short exact sequence .

-A

0 → B → A → C → 0

B- D
↳

= AIB

Here is a longer exact sequence :

t t ☒ t.tt
i. TEEE+gÉ

.
. .

- . ✓



Perhaps I should have said this in the opposite order :

Given an exact sequence

→ . . . → Ci-1
"

Ci Ci -11
"

Ci-12 → . . .

I begin to visualize it as :

i. . →.y →.I → I → I → . . .

I then put the pieces together lasing overlaps to encode relationships):

p p÷:÷i÷÷si:÷÷pim÷÷:p p

- . . ¥ÉÉ . .
.

TEE .
- .

- . ✓



Here is the snake lemma
,

in a tidy little package : H
O O

gd 1

In more detail :
o - ti I → Ii i - ti0 - A → B → C - O

d t d l
O - D → E → F → 0

' '

,

→ É*¥HÉ÷:÷*¥I
I 1

o - I → IÉ=÷*÷¥H - I I - °

1 d d

IÉ¥¥i → I - H i - o

d

o to do



This is more than an illustration of relationships .

You can turn this into a formal algebraic proof of the snake lemma , by

defining what each piece means, and showing that they have the

relationships that the pictures depict.

You might begin :

Define µ☒ : -- Ker IA →D)

: -
- Ker lB→EHker(A⇒) (after showing Ker 1A→D) is

a subgroup of Ker (B→E))

and continuing .

It isn't vastly simpler than just proving the snake

lemma
"

traditionally
"

but it puts everything into perspective. For example,

you will recognize the well- camouflaged piece Éµ is really the

star of the show .



Let us now draw a complex :

→ . . . → Ci-1
"

Ci Citi
"

Ci-12 → . . .

I begin to visualize it as :

i. . →.I → I →
'

I →
'

I → . . .

and I put the pieces together (overlapping a bit less than before) to get

"

ftp.t.tt-tttttpp
. . .

c. . (
[+ \

. -
.

Tie -É . .
.

C
- C



I can't help but give names to what I see :

erÉÉrÉcoker di coker dit '
-

*É±É±erÉ±erÉ

pimi-ya.it/simi-'pHipimipHi-Ysimi-''pi-i-Ysini+2p . . .

my
-

(
it 1

. -
.

"

" '

if Ti - - .

C
- C

we have accidentally discovered cohomology as well as . . .



We see the important short exact sequence

0 - im di
- '
→ Ker di → Hi - o

lthe traditional definition of Hi )
but also

0 → Hi - Coker di- ' → im di → 0

Iits equally important but much - neglected
"

mirror image
") .

We also have up front in our consciousness :

O- Ker di → Ci - im di - o

o → im
.

di- ' → Ci → Coker di
- '
→ o

.

(Trick question : we see the kernel and the cokernel .

We see the image . Where is the coinage ? )



Until now
,
I never realized that every complex gives a

"

kernel - cokernel
"

exact sequence :

- . . - Ker di - ' - Coker di
-2- kerdi → Coker di- ' → Ker dit '→ . . .

Which doesn't seem immediately useful , but certainly brightens my day !



If we have a morphism of complexes , there is an induced

morphism of cohomology groups . We can show this by writing down

algebra and shuffling symbols .
But it helps to look at this picture first .

Cn- ' → cnn.cn-11 (How to build it :

d l t notice the two commuting
DM - Dn - Dn" squares and also the twowww.yennwmpywg.LY

The puzzle connectors are omitted for aesthetic reasons , but the
"

arrows
"

always go
"

right
"

and
"

down
"

.
Here is the

"

P""" Picture"



We immediately see the map of cohomology:

→ given by I!

Notice how
"small

"

the image of this map is !
✓



Let us now derive the long exact sequence in cohomology arising from
a short exact sequence of complexes :

O O O O O

d d d d 1

. . . → Bn -2- Bn- '→ Bn → 13^+1 → 13^+2- . . .

b b d d b

. . . → Ch - Z- Ch- '→ Cn → Cn-11 → CN -12- . . .

d d d d tr

. . . → ☐
N - Z
- DN

- '
→ Dn → ☐

Ntl
→ DN -12- . . .

d l t d b
O O O O O

we do this by starting with the complex for the C's

-
ne ti

' ' '

my ¥+1
" "



We then note that each C
"
has a (two - term) filtration

o - Br - ch - Dn - o so that the differential

dn : Cn- Ch -" maps Bh to B " -11
, thereby ensuring that

the B. and the D. sequences are complexes .

You might want to depict the filtration like this :
B^

Dn

Tn

so the short exact sequence of complexes looks like this :

NE INotice the
snake lemma

picture in it
,

sideways .)
a- ne Lef



To make sure we are getting across the
"

subs
"

and
' "

quotients
"

,
we

add in the puzzle connectors .

' > >

U is



The long exact sequence in cohomology now becomes visually clear :

Here is our short exact sequence of complexes , with the cohomology groups

of each highlighted :
0

☐

:
wow

!



The maps on cohomology now visually/ pictorally give you our desired

long exact sequence . You might now prefer it depicted thus :

me

>

U is
§

?
>

°
is

nÉ F NE
Pictoral proof / construction of the long exact sequence in cohomology

arising from a short exact sequence of complexes .



To turn this into a proof that others can understand , you

need only turn the following into algebra, and prove them :

€0 #
-

• -1=0

☒ -

. I

#
-

• #

I



As a grand finale , we see why /how spectral sequences work .

This is a generalization of the long exact sequence in cohomology,

but will be more complicated .

-
E Ii

suppose we have a com>Lex " '

ng ¥+1

" "

and the complex is
"filtered

"

.
For simplicity, let us take a

four- step filtration .

You will see how the general case works from

this
. Having a four step filtration means that we have a filtration

0 C FEN C F'd c F'Cnc F
>Ch c Fitch = ch



We will clearly want to picture this as something like :

F
'

1=24 } F
' }µ
F

we want to draw this so that dnlficn) a Fjcn"

but we need to keep track of the ways in which dhftiln) meets
Fkcn for Ken as well .

You may want to ponder this a bit

before seeing how I do it .



It turns out that the right way to draw the filtration

on Cn is something essentially like this : ,yny,nÑgÑ
"

}

or

✓

FEW

F%Éµµ=gn in both cases
,
F
'

is on the left .

In general ,
"

subs
"

are on the

left and
"

quotients
"

are on the right .



Here then is what the filtered complex looks like .

dnt dn
Cn-2→ cn-1

"

cn → cn+ ,
d
""

→ (
n -12



Here are three cohomology groups , highlighted , corresponding to the

part lsubauotient) of Cn not overlapping with C
" '
or Cnt !

They come with an obvious filtration .

Finn F-ZH"/ fyyn

¥
1=31-1^11--2An 1--41-1^11=31-1 n

The "

output
" of the spectral sequence process will be the

"

parts
" of

the filtration Fi Hn/Fi - l Hn
.



We begin the process with the
"

subquotient
"

complexes , Fic
./Fi" Ci

.

This is
"

page o
"

of the spectral sequence /Ed . Here they are , pictorally .

The obvious maps
f-
'
co between the spaces

( indicated by arrows)

clearly describe a

1=2%-1c. series of complexes.
We take the

cohomology of these

complexes to obtain

1--304=4 the first page of
the spectral

sequence , Ei .

1--404=30



Here is the first page E , , with the entries displayed in a similar way .

We now have new natural
"

diagonal
"

morphisms , clearly (pictorially yielding complexes .
O

O

F
'
co

1=2%-10

1--304=4

1=404--4
0 0



We now take cohomology of these complexes, obtaining the second

page Ez of the sequence . Now new arrows have revealed themselves
.

O O O O

F
'
co

1=2%-10

1=3%4

1=404--30
O
o o O



We now take cohomology of these complexes, obtaining the third

page Es of the sequence . Now new arrows have revealed themselves
.

O O O O

Two of our
1=10 four pieces of

Hilo) have
already

1=2%-10 converged

1=3%4

1--404=30

0 00 0



We now take cohomology of these complexes, obtaining the final

page Ey . We have found the desired pieces of tile) !

1=10

÷⇒#÷1=2%-10

1--30/1=4 /
1--404--30



If we look closely , we can see what made this procedure work .

We label some of the regions as follows .

Gai
Gu Gu

Gu 632 ↳43
Gil Gu Gris 644

By the pH page Ep , we have surgically removed all the pieces Gij
with i < j+p .



You can now figure out how to turn this into a proof ,

by predicting each entry on the pth page , observing that the desired

arrows exist
,
and then showing that we get complexes with the

desired cohomology .

Here is most of the proof . . .



You will see that you are forced to interpret/define :

kerlcn→ 1--9:L" ' ) nfpcn

imlfr
'

-1cm) n FPU + Kerl → 1=9
'

-1cm")nFP-1C"

f-Pch] FranCaUthisArzpzgw@GG.p
FPHN G'

pg

↳ ??? ( Homework)
1=9

'

Hn
r

kerCdMnFrEnimldMInFrEn-ker@njnpoi.yn cakthisBri.q.JO
My point is that these crazy formulas no longer appear out of nowhere -

they are just translations of very reasonable pictures .



Now describe each entry on each page of

your spectral sequence as some Ar =p , q

Then describe /prove three short exact sequences

,%=p=q\
0 → Gr

, p
→ Ar > pzq

→ Art =p>q
→ 0

I.part=p>9
0 → A

rap, q+ ,
→ A

rap>q
→ G'

p , q
→ 0

Ép,qA
rap>, 9+1

Beg ,µ} % "

=P"
0 → Bp> q → Bri> qi → Bri=p, ,

→ 0

} BP> 9
_nesearenotsohardtodiscoverorproÉggMnow that we have the right definitions.

Then take some time to put the pieces together. Literally .



To sum up :

Depicting maps of vector spaces, abelian groups , modules etc .

in a visual way makes many things much more transparent ,

by offloading subtle and intricate relationships onto our

well-developed spacial intuition .

The End



Bonus Material

I. If you look closely at the to page , you will see that essentially

the only way to recover the filtered pieces of the cohomology of

the original complex is to do precisely the actions demanded

by the spectral sequence , and precisely in that (partial)

order
.



I. Second
, you see precisely the information contained

in each page of the spectral sequence .

To put it more precisely , there is a category Ep for each

page p of the spectral sequence (corresponding precisely to our

picture of the pth page) , and functors

Filtered complexes % Eo Is E , →d Ez d- . . .



II. You might then notice that the categories Ep

are all basically the same

if you carefully regrade .
So we actually have a

"

spectral

sequence page
"

category , and each
"

turning of the page
"

is doing the same thing .

Gr
Filtered complexes → Page category Dd

(You need to be careful to see how to extract the
"

limit
"

.)



II. This point of view also answers a question I have always had

about the precise meaning of theorems about spectral sequences .

Many theorems say
"there is a spectral sequence with second page given

by such- and-such , which abuts to something we want to understand .
"

I wanted to really understand the meaning of the theorem .
We had

the Ez page , and its arrows, but there is some additional information

in addition
,
that determines the arrows on the later pages. Now we know

the answer . It is precisely the information in the
"

Ez picture
"

,
which includes

the information of which collections of pieces we are
"

allowed to talk about.
"



Here is the information in the
"

full
"

Ez page (in our worked example) .

this is the information which should be in the statement of such theorems .



I. Finally , we see easily what it is about the original filtered complex

that makes the spectral sequence converge on page Ez :

A spectral sequence converges at EZ if and only if

d( Fica n Fkcn" = d '
Cn) n f- "d" for all j > 1<+1 .


